\begin{tabbing} $\forall$\=${\it es}$:ES, $l$:IdLnk, ${\it tgs}$:Id List, ${\it da}$:$k$:Knd fp$\rightarrow$ Type, $f_{1}$,\+ \\[0ex]$f_{2}$:(\{$e$:E$\mid$ loc($e$) $=$ source($l$) $\in$ Id \}$\rightarrow$((${\it tg}$:Id$\times$${\it da}$(rcv($l$,${\it tg}$))?Void) List)), ${\it ds}_{1}$, \\[0ex]${\it ds}_{2}$:$x$:Id fp$\rightarrow$ Type. \-\\[0ex]${\it ds}_{2}$ $\subseteq$ ${\it ds}_{1}$ \\[0ex]$\Rightarrow$ ($\forall$$e$:\{$e$:E$\mid$ loc($e$) $=$ source($l$) $\in$ Id \}. $f_{1}$($e$) $=$ $f_{2}$($e$)) \\[0ex]$\Rightarrow$ with decls ${\it ds}_{1}$ ${\it da}$sends on $l$ from $e$ include $f_{1}$($e$) and only these for tags in ${\it tgs}$ \\[0ex]$\Rightarrow$ with decls ${\it ds}_{2}$ ${\it da}$sends on $l$ from $e$ include $f_{2}$($e$) and only these for tags in ${\it tgs}$ \end{tabbing}